If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+4-45=0
We add all the numbers together, and all the variables
c^2-41=0
a = 1; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·1·(-41)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{41}}{2*1}=\frac{0-2\sqrt{41}}{2} =-\frac{2\sqrt{41}}{2} =-\sqrt{41} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{41}}{2*1}=\frac{0+2\sqrt{41}}{2} =\frac{2\sqrt{41}}{2} =\sqrt{41} $
| 32+(2x-12)=90 | | 5(x-11)=17 | | 2x-0.1=1.9 | | 6x−3=2x+13 | | 1+9x2=0 | | 3(x+0.1)=2 | | 53=3w+14 | | x-7÷3=5 | | x+20+2x+1+7x-11=90 | | x+6x7x-7=x+2x9x-63 | | 2v-15=1 | | 19x=95,x= | | 3(n+10)=66 | | 5x+x=42+90 | | 4(x+3)-7x=3 | | 2u-10=24 | | 5x+x+42=180 | | -2(x-2)=3(2x-4) | | -152+2x=160+15x | | 6=2(w-6)-5w | | g/2+16=26 | | 9x×9x+36=3x×3x×3x+6 | | 5+n-2n=1 | | -30=5(x-1) | | 5+n-2=1 | | x+2x+2x+4=44 | | x/6-((x-1)/2)=(x-13)/9 | | 3=-6y+3(y+5) | | 4/3x+4=7 | | 4n+3+3n=17 | | 17=2+n+4n | | X+(x/2)+((x/2)-5)=20 |